Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.885
Filtrar
1.
Biophys Chem ; 309: 107232, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593533

RESUMO

ATP-hydrolysis-associated conformational change of the ß-subunit during the rotation of F1-ATPase (F1) has been discussed using cryo-electron microscopy (cryo-EM). Since it is worthwhile to further investigate the conformation of ATP at the catalytic subunit through an alternative approach, the structure of ATP bound to the F1ß-subunit monomer (ß) was analyzed by solid-state NMR. The adenosine conformation of ATP-ß was similar to that of ATP analog in F1 crystal structures. 31P chemical shift analysis showed that the Pα and Pß conformations of ATP-ß are gauche-trans and trans-trans, respectively. The triphosphate chain is more extended in ATP-ß than in ATP analog in F1 crystals. This appears to be in the state just before ATP hydrolysis. Furthermore, the ATP-ß conformation is known to be more closed than the closed form in F1 crystal structures. In view of the cryo-EM results, ATP-ß would be a model of the most closed ß-subunit with ATP ready for hydrolysis in the hydrolysis stroke of the F1 rotation.


Assuntos
Trifosfato de Adenosina , ATPases Translocadoras de Prótons , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/metabolismo , Hidrólise , Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , Domínio Catalítico , Conformação Proteica
2.
Protein Sci ; 33(4): e4942, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501464

RESUMO

IF1 , an inhibitor protein of mitochondrial ATP synthase, suppresses ATP hydrolytic activity of F1 . One of the unique features of IF1 is the selective inhibition in mitochondrial F1 (MF1 ); it inhibits catalysis of MF1 but does not affect F1 with bacterial origin despite high sequence homology between MF1 and bacterial F1 . Here, we aimed to engineer thermophilic Bacillus F1 (TF1 ) to confer the susceptibility to IF1 for elucidating the molecular mechanism of selective inhibition of IF1 . We first examined the IF1 -susceptibility of hybrid F1 s, composed of each subunit originating from bovine MF1 (bMF1 ) or TF1 . It was clearly shown that only the hybrid with the ß subunit of mitochondrial origin has the IF1 -susceptibility. Based on structural analysis and sequence alignment of bMF1 and TF1 , the five non-conserved residues on the C-terminus of the ß subunit were identified as the candidate responsible for the IF1 -susceptibility. These residues in TF1 were substituted with the bMF1 residues. The resultant mutant TF1 showed evident IF1 -susceptibility. Reversely, we examined the bMF1 mutant with TF1 residues at the corresponding sites, which showed significant suppression of IF1 -susceptibility, confirming the critical role of these residues. We also tested additional three substitutions with bMF1 residues in α and γ subunits that further enhanced the IF1 -susceptibility, suggesting the additive role of these residues. We discuss the molecular mechanism by which IF1 specifically recognizes F1 with mitochondrial origin, based on the present result and the structure of F1 -IF1 complex. These findings would help the development of the inhibitors targeting bacterial F1 .


Assuntos
Bacillus , ATPases Translocadoras de Prótons , Animais , Bovinos , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/metabolismo , Proteínas/química , Bactérias/metabolismo , Mitocôndrias/metabolismo , Bacillus/genética , Trifosfato de Adenosina/metabolismo
3.
Mol Cell ; 83(12): 2137-2147.e4, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37244256

RESUMO

Biological energy currency ATP is produced by F1Fo-ATP synthase. However, the molecular mechanism for human ATP synthase action remains unknown. Here, we present snapshot images for three main rotational states and one substate of human ATP synthase using cryoelectron microscopy. These structures reveal that the release of ADP occurs when the ß subunit of F1Fo-ATP synthase is in the open conformation, showing how ADP binding is coordinated during synthesis. The accommodation of the symmetry mismatch between F1 and Fo motors is resolved by the torsional flexing of the entire complex, especially the γ subunit, and the rotational substep of the c subunit. Water molecules are identified in the inlet and outlet half-channels, suggesting that the proton transfer in these two half-channels proceed via a Grotthus mechanism. Clinically relevant mutations are mapped to the structure, showing that they are mainly located at the subunit-subunit interfaces, thus causing instability of the complex.


Assuntos
Trifosfato de Adenosina , ATPases Translocadoras de Prótons , Humanos , Microscopia Crioeletrônica , Trifosfato de Adenosina/metabolismo , ATPases Translocadoras de Prótons/química , Conformação Proteica
4.
Nat Commun ; 14(1): 1682, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37002198

RESUMO

IF1 is a natural inhibitor protein for mitochondrial FoF1 ATP synthase that blocks catalysis and rotation of the F1 by deeply inserting its N-terminal helices into F1. A unique feature of IF1 is condition-dependent inhibition; although IF1 inhibits ATP hydrolysis by F1, IF1 inhibition is relieved under ATP synthesis conditions. To elucidate this condition-dependent inhibition mechanism, we have performed single-molecule manipulation experiments on IF1-inhibited bovine mitochondrial F1 (bMF1). The results show that IF1-inhibited F1 is efficiently activated only when F1 is rotated in the clockwise (ATP synthesis) direction, but not in the counterclockwise direction. The observed rotational-direction-dependent activation explains the condition-dependent mechanism of IF1 inhibition. Investigation of mutant IF1 with N-terminal truncations shows that the interaction with the γ subunit at the N-terminal regions is crucial for rotational-direction-dependent ejection, and the middle long helix is responsible for the inhibition of F1.


Assuntos
ATPases Mitocondriais Próton-Translocadoras , ATPases Translocadoras de Prótons , Animais , Bovinos , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/química , Proteínas/metabolismo , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo
5.
Biophys Chem ; 296: 106988, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36898347

RESUMO

Nuclear magnetic resonance (NMR) investigation of large membrane proteins requires well-focused questions and critical techniques. Here, research strategies for FoF1-ATP synthase, a membrane-embedded molecular motor, are reviewed, focusing on the ß-subunit of F1-ATPase and c-subunit ring of the enzyme. Segmental isotope-labeling provided 89% assignment of the main chain NMR signals of thermophilic Bacillus (T)F1ß-monomer. Upon nucleotide binding to Lys164, Asp252 was shown to switch its hydrogen-bonding partner from Lys164 to Thr165, inducing an open-to-closed bend motion of TF1ß-subunit. This drives the rotational catalysis. The c-ring structure determined by solid-state NMR showed that cGlu56 and cAsn23 of the active site took a hydrogen-bonded closed conformation in membranes. In 505 kDa TFoF1, the specifically isotope-labeled cGlu56 and cAsn23 provided well-resolved NMR signals, which revealed that 87% of the residue pairs took a deprotonated open conformation at the Foa-c subunit interface, whereas they were in the closed conformation in the lipid-enclosed region.


Assuntos
Trifosfato de Adenosina , ATPases Translocadoras de Prótons , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/metabolismo , Espectroscopia de Ressonância Magnética , Domínio Catalítico , Trifosfato de Adenosina/metabolismo , Hidrogênio/metabolismo , Conformação Proteica
6.
J Phys Chem B ; 127(7): 1552-1562, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36734508

RESUMO

The electrochemical potential difference of protons across the membrane is used to synthesize ATP through the proton-motive rotatory motion of the membrane-embedded region of ATP synthase called Fo. In this study, we illuminate the unsolved proton-motive rotary mechanism of Fo on the basis of atomistic simulation with full description of protein, lipid, and water molecules, and highlight the underlying Coulombic design. We first show that a water channel is spontaneously formed at the interfacial region between the rotor (c-ring) and the stator (a-subunit). The observed water channel is a full channel penetrating the membrane, but a Coulomb barrier by a strictly conserved arginine of the a-subunit dominates at the midpoint of the full channel, preventing proton leakage. Our molecular dynamics simulation further demonstrates that the Coulomb attraction between the arginine and the essential glutamic acid of the c-subunit drives the c-ring rotation. We finally illustrate that the charge-state changes of the glutamic acids, enabled by the electrochemical potential difference of proton and the thermal motion, can produce unidirectional rotation of the c-ring.


Assuntos
Simulação de Dinâmica Molecular , Prótons , Rotação , Trifosfato de Adenosina/metabolismo , Arginina , ATPases Translocadoras de Prótons/química
7.
Sci Adv ; 9(8): eabg3015, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36812329

RESUMO

Cells orchestrate the motion and force of hundreds of protein motors to perform various mechanical tasks over multiple length scales. However, engineering active biomimetic materials from protein motors that consume energy to propel continuous motion of micrometer-sized assembling systems remains challenging. Here, we report rotary biomolecular motor-powered supramolecular (RBMS) colloidal motors that are hierarchically assembled from a purified chromatophore membrane containing FOF1-ATP synthase molecular motors, and an assembled polyelectrolyte microcapsule. The micro-sized RBMS motor with asymmetric distribution of FOF1-ATPases can autonomously move under light illumination and is collectively powered by hundreds of rotary biomolecular motors. The propulsive mechanism is that a transmembrane proton gradient generated by a photochemical reaction drives FOF1-ATPases to rotate for ATP biosynthesis, which creates a local chemical field for self-diffusiophoretic force. Such an active supramolecular architecture endowed with motility and biosynthesis offers a promising platform for intelligent colloidal motors resembling the propulsive units in swimming bacteria.


Assuntos
Bactérias , ATPases Translocadoras de Prótons , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/metabolismo , Movimento (Física) , Bactérias/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Motores Moleculares/metabolismo
8.
Biophys J ; 122(3): 554-564, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36560882

RESUMO

F1-ATPase is the world's smallest biological rotary motor driven by ATP hydrolysis at three catalytic ß subunits. The 120° rotational step of the central shaft γ consists of 80° substep driven by ATP binding and a subsequent 40° substep. In order to correlate timing of ATP cleavage at a specific catalytic site with a rotary angle, we designed a new F1-ATPase (F1) from thermophilic Bacillus PS3 carrying ß(E190D/F414E/F420E) mutations, which cause extremely slow rates of both ATP cleavage and ATP binding. We produced an F1 molecule that consists of one mutant ß and two wild-type ßs (hybrid F1). As a result, the new hybrid F1 showed two pausing angles that are separated by 200°. They are attributable to two slowed reaction steps in the mutated ß, thus providing the direct evidence that ATP cleavage occurs at 200° rather than 80° subsequent to ATP binding at 0°. This scenario resolves the long-standing unclarified issue in the chemomechanical coupling scheme and gives insights into the mechanism of driving unidirectional rotation.


Assuntos
Bacillus , ATPases Translocadoras de Prótons , ATPases Translocadoras de Prótons/química , Bacillus/metabolismo , Trifosfato de Adenosina/metabolismo , Catálise , Proteínas Motores Moleculares/metabolismo , Hidrólise
9.
Biophys J ; 122(14): 2898-2909, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-36171725

RESUMO

FOF1 ATP synthase, a ubiquitous enzyme that synthesizes most ATP in living cells, is composed of two rotary motors: a membrane-embedded proton-driven FO motor and a catalytic F1 motor. These motors share both central and peripheral stalks. Although both FO and F1 have pseudo-symmetric structures, their symmetries do not match. How symmetry mismatch is solved remains elusive because of the missing intermediate structures of the rotational steps. Here, for the case of Bacillus PS3 ATP synthases with three- and 10-fold symmetries in F1 and FO, respectively, we uncovered the mechanical couplings between FO and F1 at every 36° rotation step via molecular dynamics simulations and comparative studies of cryoelectron microscopy (cryo-EM) structures from three species. We found that the mismatch could be solved using several elements: 1) the F1 head partially rotates relative to the FO a subunit via elastic distortion of the b subunits, 2) the rotor is twisted, and 3) comparisons of cryo-EM structures further suggest that the c ring rotary angles can deviate from the symmetric ones. In addition, the F1 motor may have non-canonical structures, relieving stronger frustration. Thus, we provide new insights for solving the symmetry mismatch problem.


Assuntos
Trifosfato de Adenosina , ATPases Translocadoras de Prótons , ATPases Translocadoras de Prótons/química , Conformação Proteica , Rotação , Microscopia Crioeletrônica
10.
Biol Pharm Bull ; 45(10): 1412-1418, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36184497

RESUMO

The F-type ATPase family of enzymes, including ATP synthases, are found ubiquitously in biological membranes. ATP synthesis from ADP and inorganic phosphate is driven by an electrochemical H+ gradient or H+ motive force, in which intramolecular rotation of F-type ATPase is generated with H+ transport across the membranes. Because this rotation is essential for energy coupling between catalysis and H+-transport, regulation of the rotation is important to adapt to environmental changes and maintain ATP concentration. Recently, a series of cryo-electron microscopy images provided detailed insights into the structure of the H+ pathway and the multiple subunit arrangement. However, the regulatory mechanism of the rotation has not been clarified. This review describes the inhibition mechanism of ATP hydrolysis in bacterial enzymes. In addition, properties of the F-type ATPase of Streptococcus mutans, which acts as a H+-pump in an acidic environment, are described. These findings may help in the development of novel antimicrobial agents.


Assuntos
Trifosfato de Adenosina , ATPases Translocadoras de Prótons , Difosfato de Adenosina , Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , Fosfatos , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/metabolismo
11.
Nature ; 607(7919): 492-498, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35859200

RESUMO

To impart directionality to the motions of a molecular mechanism, one must overcome the random thermal forces that are ubiquitous on such small scales and in liquid solution at ambient temperature. In equilibrium without energy supply, directional motion cannot be sustained without violating the laws of thermodynamics. Under conditions away from thermodynamic equilibrium, directional motion may be achieved within the framework of Brownian ratchets, which are diffusive mechanisms that have broken inversion symmetry1-5. Ratcheting is thought to underpin the function of many natural biological motors, such as the F1F0-ATPase6-8, and it has been demonstrated experimentally in synthetic microscale systems (for example, to our knowledge, first in ref. 3) and also in artificial molecular motors created by organic chemical synthesis9-12. DNA nanotechnology13 has yielded a variety of nanoscale mechanisms, including pivots, hinges, crank sliders and rotary systems14-17, which can adopt different configurations, for example, triggered by strand-displacement reactions18,19 or by changing environmental parameters such as pH, ionic strength, temperature, external fields and by coupling their motions to those of natural motor proteins20-26. This previous work and considering low-Reynolds-number dynamics and inherent stochasticity27,28 led us to develop a nanoscale rotary motor built from DNA origami that is driven by ratcheting and whose mechanical capabilities approach those of biological motors such as F1F0-ATPase.


Assuntos
DNA , Difusão Facilitada , Proteínas Motores Moleculares , DNA/química , Concentração de Íons de Hidrogênio , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/metabolismo , Movimento (Física) , Movimento , Concentração Osmolar , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/metabolismo , Processos Estocásticos , Temperatura , Termodinâmica
12.
Nature ; 609(7926): 293-298, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35793710

RESUMO

Biological systems mainly utilize chemical energy to fuel autonomous molecular motors, enabling the system to be driven out of equilibrium1. Taking inspiration from rotary motors such as the bacterial flagellar motor2 and adenosine triphosphate synthase3, and building on the success of light-powered unidirectional rotary molecular motors4-6, scientists have pursued the design of synthetic molecular motors solely driven by chemical energy7-13. However, designing artificial rotary molecular motors operating autonomously using a chemical fuel and simultaneously featuring the intrinsic structural design elements to allow full 360° unidirectional rotary motion like adenosine triphosphate synthase remains challenging. Here we show that a homochiral biaryl Motor-3, with three distinct stereochemical elements, is a rotary motor that undergoes repetitive and unidirectional 360° rotation of the two aryl groups around a single-bond axle driven by a chemical fuel. It undergoes sequential ester cyclization, helix inversion and ring opening, and up to 99% unidirectionality is realized over the autonomous rotary cycle. The molecular rotary motor can be operated in two modes: synchronized motion with pulses of a chemical fuel and acid-base oscillations; and autonomous motion in the presence of a chemical fuel under slightly basic aqueous conditions. This rotary motor design with intrinsic control over the direction of rotation, simple chemical fuelling for autonomous motion and near-perfect unidirectionality illustrates the potential for future generations of multicomponent machines to perform mechanical functions.


Assuntos
Trifosfato de Adenosina , Proteínas Motores Moleculares , Trifosfato de Adenosina/metabolismo , Ciclização , Ésteres/química , Modelos Moleculares , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/metabolismo , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/metabolismo , Rotação
13.
J Phys Chem Lett ; 13(1): 387-392, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-34985899

RESUMO

Fo subcomplex of ATP synthase is a membrane-embedded rotary motor that converts proton motive force into mechanical energy. Despite a rapid increase in the number of high-resolution structures, the mechanism of tight coupling between proton transport and motion of the rotary c-ring remains elusive. Here, using extensive all-atom free energy simulations, we show how the motor's directionality naturally arises from the interplay between intraprotein interactions and energetics of protonation of the c-ring. Notably, our calculations reveal that the strictly conserved arginine in the a-subunit (R176) serves as a jack-of-all-trades: it dictates the direction of rotation, controls the protonation state of the proton-release site, and separates the two proton-access half-channels. Therefore, arginine is necessary to avoid slippage between the proton flux and the mechanical output and guarantees highly efficient energy conversion. We also provide mechanistic explanations for the reported defective mutations of R176, reconciling the structural information on the Fo motor with previous functional and single-molecule data.


Assuntos
ATPases Translocadoras de Prótons/metabolismo , Modelos Moleculares , Força Próton-Motriz , ATPases Translocadoras de Prótons/química , Termodinâmica
14.
J Biomol Struct Dyn ; 40(2): 635-647, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-32876544

RESUMO

Both ATP and inorganic polyphosphates (PolyP) appeared to be involved in the yeast energy homeostasis, in which plasma membrane PMA1 H+-АТРase plays one of the key roles. During biogenesis and functioning, the enzyme undergoes structural and regulatory phosphorylation. Aim of the work was to elucidate interconnection between functioning of the yeast PMA1 H+-АТРase carrying point substitutions that affected the enzyme structure-function relationship and its ability to be phosphorylated and PolyP metabolism. Effect of such replacements of phosphorylable and non-phosphorylable residues in three topologically and functionally different domains of the enzyme - membrane, extracytosolic, and C-terminal - on the metabolism of polyphosphates and distribution between short-, mid-, and long-chained PolyP fractions (PolyP1-PolyP4-5) has been studied. АТРase activity of membrane and most extracytosolic strains was noticeably lower comparing to the wild type. Of these mutants, three substitutions (L801A, E803A, E847A) have not caused significant changes in PolyP content regardless up to twofold drop of the ATPase activity; F796A with four-fold decreased activity has led to noticeable increase of mid-chained PolyP fractions. The most pronounced effect of PolyP redistribution was caused either by removal of potential (S846A, T850A, D851A) or established (S911A) phosphosites in the PMA1 ATPase or by altering type of the established phosphosite (S911D, T912D). Patterns of PolyP fractions for these two groups have significantly differed from each other, occurring in opposite directions for mutants with removed and changed phosphosite. Changing residue of phosphosite without altering its type (T850S) has not led to significant changes in PolyP content.Communicated by Ramaswamy H. Sarma.


Assuntos
ATPases Translocadoras de Prótons , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Membrana Celular/metabolismo , Mutação Puntual , Polifosfatos/metabolismo , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Elife ; 102021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34970963

RESUMO

Most cellular ATP is made by rotary F1FO ATP synthases using proton translocation-generated clockwise torque on the FO c-ring rotor, while F1-ATP hydrolysis can force counterclockwise rotation and proton pumping. The FO torque-generating mechanism remains elusive even though the FO interface of stator subunit-a, which contains the transmembrane proton half-channels, and the c-ring is known from recent F1FO structures. Here, single-molecule F1FO rotation studies determined that the pKa values of the half-channels differ, show that mutations of residues in these channels change the pKa values of both half-channels, and reveal the ability of FO to undergo single c-subunit rotational stepping. These experiments provide evidence to support the hypothesis that proton translocation through FO operates via a Grotthuss mechanism involving a column of single water molecules in each half-channel linked by proton translocation-dependent c-ring rotation. We also observed pH-dependent 11° ATP synthase-direction sub-steps of the Escherichia coli c10-ring of F1FO against the torque of F1-ATPase-dependent rotation that result from H+ transfer events from FO subunit-a groups with a low pKa to one c-subunit in the c-ring, and from an adjacent c-subunit to stator groups with a high pKa. These results support a mechanism in which alternating proton translocation-dependent 11° and 25° synthase-direction rotational sub-steps of the c10-ring occur to sustain F1FO ATP synthesis.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , ATPases Translocadoras de Prótons/química , Concentração de Íons de Hidrogênio
16.
Nat Commun ; 12(1): 6439, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750373

RESUMO

The S. cerevisiae plasma membrane H+-ATPase, Pma1, is a P3A-type ATPase and the primary protein component of the membrane compartment of Pma1 (MCP). Like other plasma membrane H+-ATPases, Pma1 assembles and functions as a hexamer, a property unique to this subfamily among the larger family of P-type ATPases. It has been unclear how Pma1 organizes the yeast membrane into MCP microdomains, or why it is that Pma1 needs to assemble into a hexamer to establish the membrane electrochemical proton gradient. Here we report a high-resolution cryo-EM study of native Pma1 hexamers embedded in endogenous lipids. Remarkably, we found that the Pma1 hexamer encircles a liquid-crystalline membrane domain composed of 57 ordered lipid molecules. The Pma1-encircled lipid patch structure likely serves as the building block of the MCP. At pH 7.4, the carboxyl-terminal regulatory α-helix binds to the phosphorylation domains of two neighboring Pma1 subunits, locking the hexamer in the autoinhibited state. The regulatory helix becomes disordered at lower pH, leading to activation of the Pma1 hexamer. The activation process is accompanied by a 6.7 Å downward shift and a 40° rotation of transmembrane helices 1 and 2 that line the proton translocation path. The conformational changes have enabled us to propose a detailed mechanism for ATP-hydrolysis-driven proton pumping across the plasma membrane. Our structures will facilitate the development of antifungal drugs that target this essential protein.


Assuntos
Membrana Celular/enzimologia , Microdomínios da Membrana/enzimologia , ATPases Translocadoras de Prótons/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Transporte Biológico/genética , Domínio Catalítico , Membrana Celular/ultraestrutura , Microscopia Crioeletrônica , Ativação Enzimática , Hidrólise , Microdomínios da Membrana/ultraestrutura , Modelos Moleculares , Mutação , Conformação Proteica , Multimerização Proteica , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Prótons , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Mol Cell ; 81(23): 4799-4809.e5, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34798056

RESUMO

The cytoplasmic polyamine maintains cellular homeostasis by chelating toxic metal cations, regulating transcriptional activity, and protecting DNA. ATP13A2 was identified as a lysosomal polyamine exporter responsible for polyamine release into the cytosol, and its dysfunction is associated with Alzheimer's disease and other neural degradation diseases. ATP13A2 belongs to the P5 subfamily of the P-type ATPase family, but its mechanisms remain unknown. Here, we report the cryoelectron microscopy (cryo-EM) structures of human ATP13A2 under four different conditions, revealing the structural coupling between the polyamine binding and the dephosphorylation. Polyamine is bound at the luminal tunnel and recognized through numerous electrostatic and π-cation interactions, explaining its broad specificity. The unique N-terminal domain is anchored to the lipid membrane to stabilize the E2P conformation, thereby accelerating the E1P-to-E2P transition. These findings reveal the distinct mechanism of P5B ATPases, thereby paving the way for neuroprotective therapy by activating ATP13A2.


Assuntos
Adenosina Trifosfatases/química , Lipídeos/química , Poliaminas/química , ATPases Translocadoras de Prótons/química , Sítios de Ligação , Microscopia Crioeletrônica , Citosol/metabolismo , Células HEK293 , Homeostase , Humanos , Lipídeos de Membrana/química , Micelas , Conformação Molecular , Fosforilação , Conformação Proteica
18.
Mol Cell ; 81(22): 4635-4649.e8, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34715013

RESUMO

Polyamines are small, organic polycations that are ubiquitous and essential to all forms of life. Currently, how polyamines are transported across membranes is not understood. Recent studies have suggested that ATP13A2 and its close homologs, collectively known as P5B-ATPases, are polyamine transporters at endo-/lysosomes. Loss-of-function mutations of ATP13A2 in humans cause hereditary early-onset Parkinson's disease. To understand the polyamine transport mechanism of ATP13A2, we determined high-resolution cryoelectron microscopy (cryo-EM) structures of human ATP13A2 in five distinct conformational intermediates, which together, represent a near-complete transport cycle of ATP13A2. The structural basis of the polyamine specificity was revealed by an endogenous polyamine molecule bound to a narrow, elongated cavity within the transmembrane domain. The structures show an atypical transport path for a water-soluble substrate, in which polyamines may exit within the cytosolic leaflet of the membrane. Our study provides important mechanistic insights into polyamine transport and a framework to understand the functions and mechanisms of P5B-ATPases.


Assuntos
Poliaminas/química , ATPases Translocadoras de Prótons/química , Animais , Transporte Biológico , Catálise , Microscopia Crioeletrônica , Citosol/metabolismo , Humanos , Lipídeos/química , Lisossomos/química , Simulação de Dinâmica Molecular , Doença de Parkinson/metabolismo , Fosforilação , Conformação Proteica , Domínios Proteicos , Saccharomyces cerevisiae/metabolismo , Spodoptera
19.
Mol Cell ; 81(22): 4650-4662.e4, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34715014

RESUMO

Mutations in ATP13A2, also known as PARK9, cause a rare monogenic form of juvenile-onset Parkinson's disease named Kufor-Rakeb syndrome and other neurodegenerative diseases. ATP13A2 encodes a neuroprotective P5B P-type ATPase highly enriched in the brain that mediates selective import of spermine ions from lysosomes into the cytosol via an unknown mechanism. Here we present three structures of human ATP13A2 bound to an ATP analog or to spermine in the presence of phosphomimetics determined by cryoelectron microscopy. ATP13A2 autophosphorylation opens a lysosome luminal gate to reveal a narrow lumen access channel that holds a spermine ion in its entrance. ATP13A2's architecture suggests physical principles underlying selective polyamine transport and anticipates a "pump-channel" intermediate that could function as a counter-cation conduit to facilitate lysosome acidification. Our findings establish a firm foundation to understand ATP13A2 mutations associated with disease and bring us closer to realizing ATP13A2's potential in neuroprotective therapy.


Assuntos
Encéfalo/metabolismo , Poliaminas/química , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/genética , Sítio Alostérico , Sítios de Ligação , Transporte Biológico , Microscopia Crioeletrônica , Humanos , Íons/química , Lisossomos/química , Mutação , Fosforilação , Domínios Proteicos , Proteínas Recombinantes/química , Espermina/metabolismo , Especificidade por Substrato
20.
Nature ; 599(7884): 278-282, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34707287

RESUMO

The phytohormone auxin controls many processes in plants, at least in part through its regulation of cell expansion1. The acid growth hypothesis has been proposed to explain auxin-stimulated cell expansion for five decades, but the mechanism that underlies auxin-induced cell-wall acidification is poorly characterized. Auxin induces the phosphorylation and activation of the plasma membrane H+-ATPase that pumps protons into the apoplast2, yet how auxin activates its phosphorylation remains unclear. Here we show that the transmembrane kinase (TMK) auxin-signalling proteins interact with plasma membrane H+-ATPases, inducing their phosphorylation, and thereby promoting cell-wall acidification and hypocotyl cell elongation in Arabidopsis. Auxin induced interactions between TMKs and H+-ATPases in the plasma membrane within seconds, as well as TMK-dependent phosphorylation of the penultimate threonine residue on the H+-ATPases. Our genetic, biochemical and molecular evidence demonstrates that TMKs directly phosphorylate plasma membrane H+-ATPase and are required for auxin-induced H+-ATPase activation, apoplastic acidification and cell expansion. Thus, our findings reveal a crucial connection between auxin and plasma membrane H+-ATPase activation in regulating apoplastic pH changes and cell expansion through TMK-based cell surface auxin signalling.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Parede Celular/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Ácidos , Arabidopsis/citologia , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/enzimologia , Ativação Enzimática , Concentração de Íons de Hidrogênio , Hipocótilo/enzimologia , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Proteínas de Membrana/genética , Fosforilação , Reguladores de Crescimento de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/metabolismo , Prótons , Treonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...